RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family.

نویسندگان

  • Natacha Bies-Etheve
  • Dominique Pontier
  • Sylvie Lahmy
  • Claire Picart
  • Danielle Vega
  • Richard Cooke
  • Thierry Lagrange
چکیده

Recent studies have identified a conserved WG/GW-containing motif, known as the Argonaute (AGO) hook, which is involved in the recruitment of AGOs to distinct components of the eukaryotic RNA silencing pathways. By using this motif as a model to detect new components in plant RNA silencing pathways, we identified SPT5-like, a plant-specific AGO4-interacting member of the nuclear SPT5 (Suppressor of Ty insertion 5) RNA polymerase (RNAP) elongation factor family that is characterized by the presence of a carboxy-terminal extension with more than 40 WG/GW motifs. Knockout SPT5-like mutants show a decrease in the accumulation of several 24-nt RNAs and hypomethylation at different loci revealing an implication in RNA-directed DNA methylation (RdDM). Here, we propose that SPT5-like emerged in plants as a facultative RNAP elongation factor. Its plant-specific origin and role in RdDM might reflect functional interactions with plant-specific RNA Pols required for RdDM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effector of RNA-Directed DNA Methylation in Arabidopsis Is an ARGONAUTE 4- and RNA-Binding Protein

DNA methylation is a conserved epigenetic mark in plants and mammals. In Arabidopsis, DNA methylation can be triggered by small interfering RNAs (siRNAs) through an RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification of an RdDM effector, KTF1. Loss-of-function mutations in KTF1 reduce DNA methylation and release the silencing of RdDM target loci without abolishing th...

متن کامل

Specific but interdependent functions for Arabidopsis AGO4 and AGO6 in RNA-directed DNA methylation.

Argonaute (AGO) family proteins are conserved key components of small RNA-induced silencing pathways. In the RNA-directed DNA methylation (RdDM) pathway in Arabidopsis, AGO6 is generally considered to be redundant with AGO4. In this report, our comprehensive, genomewide analyses of AGO4- and AGO6-dependent DNA methylation revealed that redundancy is unexpectedly negligible in the genetic intera...

متن کامل

Functional Dissection of the Pol V Largest Subunit CTD in RNA-Directed DNA Methylation.

Plant multisubunit RNA polymerase V (Pol V) transcription recruits Argonaute-small interfering RNA (siRNA) complexes that specify sites of RNA-directed DNA methylation (RdDM) for gene silencing. Pol V's largest subunit, NRPE1, evolved from the largest subunit of Pol II but has a distinctive C-terminal domain (CTD). We show that the Pol V CTD is dispensable for catalytic activity in vitro yet es...

متن کامل

Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences.

The human immunodeficiency virus type 1 (HIV-1) Tat protein activates transcription elongation by stimulating the Tat-activated kinase (TAK/p-TEFb), a protein kinase composed of CDK9 and its cyclin partner, cyclin T1. CDK9 is able to hyperphosphorylate the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase during elongation. In addition to TAK, the transcription elongation fa...

متن کامل

Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae.

Genetic and biochemical studies have identified many factors thought to be important for transcription elongation. We investigated relationships between three classes of these factors: (1) transcription elongation factors Spt4-Spt5, TFIIS, and Spt16; (2) the C-terminal heptapeptide repeat domain (CTD) of RNA polymerase II; and (3) protein kinases that phosphorylate the CTD and a phosphatase tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EMBO reports

دوره 10 6  شماره 

صفحات  -

تاریخ انتشار 2009